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ABSTRACT

The linear theory of elasticity is used to investigate axially symmetric wave
propagation in an infinitely long two-layered cylinder. Each material is
taken to be homogeneou« and isotropic. A perfect bond is assumed at the
interface, while the inner and outer boundaries of the composite cylinder
are treated as traction-free., The dispersion determinant relating phase
velocity and wave number for a harmonic train of waves satisfying these
boundary .cnditions is presented. The character of the dispersion equation
is investigated analytically and numerically. Stress and displacement
distributions are also pre: ented for the numerical example. Comparisons
are made with an approximate solution of the same problem obtained by
means of a thin shell theory incorporating thickness-shear deformation of
esch lsyer.
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. INTRODUCTION

in recent years considerable attention has been focused on multi-
layered shells. Often a sandwich-type construction is used to lighten the
weight of a sholl structure; in other instances, a protective layar is bonded
to a shell as, for example, in ths case of a re-entry vehicle heat shield or
a rocket noszle liner, Two-layered thick shell configurations are also used
in solid propellant rocket motors,

This study employs the linear theory of elasticity and treats the propa-
gation of a train of waves in an infinitely long, two-layered cylinder; each
layer is homogeneous and isotropic, Computations bLased on this solution
are usad in an assessment of the accuracy of an approximate two-layered
shell theory that was prescnted nconuy.l This latter thewry included the
effects of shear deformation and rotatory inertia, * In Rei. 1, & partial
comparison is made between the shell theory and the solutions obtained in
the present work ueing the linear thaory of slasticity. Dispersion curves
were comparcd in detall, and a few displacement distribution comparisons
were made. The present work gives detailad displacement comparisons
over a larger frequency and wave number regime ard also presents stress
distribution comparisons.

The propagation of waves in cylindricelly bounded media has been
extensively investigated, Although most of the work has been liimited to
cyiinders of a single material, it is of interest \o recall a few of the more
pertinent references. l”ocl'numn'nr'z and O\rco:‘ first formulated the prob-
lem for solid cylindrical bars, Ghooh‘ formulated the problen: for hollow
cylindrical bars but presented no calculations. Later, Gazis™’ 6.7 and

Groonlpon" 9 made extensive numerical calculations for the vibraticns of a

L]
For a more extengive bibliography dealing with the thin shell literature of

layered shells see Ref. |,
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hollow cylinder and compared them with saveral approximate shell theories
10,11,12 and N::hdi and Conooer. 13,14

and Bird, Hart, and McClure. 16

The vibrations of a muiiiiayered cyiinder using the equaiions oi ihe iincai

such an thnae of Herrmann and Mi r-hy

Gther investigatore include Bil'cl15

theory of clasticity have not been extensively investigated. Baltrukonis,
Gottenbarg, and Schrcincr” treated simple thickness-shear vibrations of a
two-layered cylinder, and McNiven, Sackman, and Shah!® treated propagation
of axially syrnmetric waves in solid bars with an outer fiunite layer. Other than
these, the authors know of no other references treating multilayered cylinders
by the linear theory of elasticity.

Layered half-planes have been extensively treated by geophysiciats, 19
but their work is not particularly of interest here since geophysical earth
moudsls always have one infinite laysr. Of the plane two medium problems
with finite layers, the symmaetrical sandwich two-dimensional beam is treated
by Saito and Sato, 20 4nd the asymmetrical two-laysred counterpart is trested
by Jones. 2l
that the wave propagation solution of the two-laysred cylinder problem degen-

The last reference is especially apropos since it is shown here

erates into the solution of the plane two layered medium problem when the
wavelength becomes sufficiently amall compared to the thickness.
The present analysis is formulated in terms of displacement potentiais.

A eolution in the form of an infinite train of axially symmetric waves is assumed.

To satisfy boundary conditions the phase velocity (or frequency) must depend on
wave number in such a way that an eighth-order detarminant vanishes. Due to
ite complexity little analytical progress can be made with this disperaion
detarminant except in special cases. However, for infinitely long waves the
detarminant raduces to a product of two fourth -order determinants whose
frequency roots correspond to vibrations with either purely axial or purely
radial motion. Alternatively, for very short waves the determinant reduces to
a form given previously by Jonco“ for a plane two-layered medium. Here the
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phase velocity roots correspond to Rayieigh waves on the free surfaces am.:!
a noanrihle Stonelev wave at the interface, * For waves of intennediate length,
roots of the dispersion determinant are found numerically with a digital com-
puins program desciibed hersin, Displacemnit and strese distributione cor.
responding to these roots are also found for a specific numerical example, and
these are used to estimate the accuracy of the previously mentioned shell theory.
It is concluded that a Timoshenko-type shell theory gives good agreement
with the present exact solution in a region of applicability encampassing low
enough frequencies and 'arge enough wavelengths. It appears that to extend
this region of applicability one must use a shell theory incorpaorating thickness-
stretch motio... On the basis of the displacements obtained from the exact
theory, a linear distribution of radial motion does not appezr to te an
unreasonabie first approximation for a thickneas-etretch theory,

A Raneley wave niay or may not exist at an interface c!epcndin? on the
slaetic propartiss and densities of the two media (Ref. 19, p. 113),

.3
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II. ANALYSIS

Consider a douvbly infinite hollow cylinder composed of two homo-
geneous, isotropic, elastic media with Lame constante A, u,, A,, and
Hy and densities CH &nd p,, where subscript | refere to the outer layer
and subscript 2 refers to the inner layer. The cylinders are psrfectly
bonded together at the interface. Cylindrical coordinates r, 0, and =
are employed, The interface radius is denotad by a, and the thicknesses
are hl and hZ'
Written in terms of the potential functions ¢ and ¥ the equations of

elasticity for motions with torsionless axial symmetry are

2 2
v¢=°—‘z¢,“ : v*=;lz'.u m

where the displacements and stresses may be generated from thm potential

functions by

_ . . ]

ug =0, ur"",r+*.u ' w",:'?(ﬂ.r),r (2)
o = A (2o ve e Jeaue +v ) (3

rr r? r . rr Y T Jrel,r

1

vz ~ "‘(Z’, rz +",zz ) w,rr - ?', r), r (4)
°  =\(l¢ +9 te )*2 ] ’l(f" ) (%)

2z r¥.r ,rr , T2 K% g2 ° ¥ ,re’, e

-5.




The terms u and w are the radial and axial displacements, respectively,

ando__, o,
rr rz

9gp i® omitted since it is not easential to the problemn. All other strasa

and o__ are the stress components. The expression for

componentg are zero and o and 8 are the dilatational and equivaluminal

wave speecis defined by

2 _\4+2 2
R - o
ot = pe -t 0

Equations {1)-(5) hold in either layer provided appropriate values of a, 8,
A and . are used.

If a Rayieigh train of waves is assumed, then all quantit'es are con-

sidered to vary as

w = W r)al (KZ-0t) , o . = ?"(r)a““"“‘” . etc. N

and the solution to Eqe. (1} is (the factor e KE-4%) 0y been suppressed for
compactness)

¢ - Alo(k(r) + BKo(ker)

(8)
ik¥ = CI (kbr) + DK (kér)

Here !O and Ko are modified Bessel functions of the first and second kind and
reroth order. The solutions Eq. (8) hold in either mediun: provided the

parameters appropriate to each mediwn are used in the equations. Thus there

will be two suts of ¢'s und b'se;

2 2
2 < 2 <
1=z ' 2l
a, e, {9)
(cont.)

-b-
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where

2
w

c = (10}
]"7

Also there will be two sets of conatants A, A, and B BZ' etc,, to be »

1’ 72

deterrnined by application of boundary conditions on o_ _, vrz.ur,md w,

rr

Expressing the displacements and stresses in terms of the solutions, Eq. {8),

one obtains

L 2 2 2110((1-) K (kcr)
Tl-:k A(l+6)lo(k!f)-2(T— +B(l+6)l(0(k<r)+2¢—ﬁ-r—-

2,2 1,(kér) K, (kér)
C + 276 o(k6l‘) - T“——— o(kﬁl') + -—E‘———]
&
(1)
Iz Zikzc[AIl(ku) - BKl(kcr)] + ikz6[C(l + eznlmn - D ¢ éz)Kl(kbr)]
(12)
u, = k[Adl(lur) - BeK, (ker) + CBI, (kbr) - DbK!(kbr)} (13)
. [ . 2 2

w = ik[Al fker) + BK(ccr) + C%1 (kér) + DB Ko(kér)] (14)

The above expressions are valid in 2ach region provided appropriate values

o.A B Ci' D < 61' “ih = 1,2) are used.




&

The boundary conditions for the free vibration problem sre

'..(l"._(l’._a ae - aa A 7
rr r' LT B a -~ - ¢ ..l
@) @) _ -
e :o-"~0 at r-a-hz
(135)
LAD L (2) L (2 L 2)
rr rr ' rx  rz ' -
w“) = ‘(2) at r=a J

The superscripts indicate quantities in medium § or 2. From the boundary
condition, Eq. {(15), one obtains with the aid of Eqs. (11)-(i4) eight linear
homogensous equations for the eight constants Al‘ e DZ‘ Since the aquations
are long and their formulations are straightforward, the esquations are
presented in the Appendix rather than in the text.

To assure nontrivial values of Al, Bl' . .-+ C,, D,, the determinant
of their coefficients must be set squal to sero. This constitutes the dispersion
equation. The determinant is as follows:
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The determinant, Eq. (16), i3 so complicated that little can be done to
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nant are obtainable for the limiting casce of very long and vary short waves.

For infinite wavelengths, i.e., k = 0, the solutions, Eq. (8), become
independent of z, and the determiinant degencrates to the product of two
fourth-order determinants. A mo=e straightforward derivation of these
fourth-order determinants involves repeating the calculations with the s
dependence excluded from the outset. Then it is clear that one of the fourth-
order determinants corresponds to purely radial motions while the cther
corrcsponds to purely axial motions.

Egquating the radial motion determinant to zero one obteine the frequency

squation for simple thicknrss stretch vibrations:

-10-
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Kquating the axial motion determinant to saro ons obtains the foegquancy

squation for axial shear vihrations

s f_z.,

't

E o

[

; ’l(“ )

o _g‘?

~2

A —— e

' 4
Tnd
-]
(L]

Kquation (18) hs been obtained by Baltrukonie, et al.’’
For vary short wavelengths compared to the interface radius of the
cylinder, it would be saxpected that propagation of axially symmetric waves in
8 two-layersd cylinder would differ very little from propagation of straight
crested waves in a plane two-layered medium at laast for a thin cylinder.
The trutk of this supposition can be shown analytically in Eq. (16) by re-
placing lo. I‘. Ko. and Kl by their asymptotic values for large arguments:

3 1 (t, - ——nz-
0 (2wx)

Ko = ()" o

{(x > 1)

-12-
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With these substitutions and a slight redefinition of coefficients in Eqs. (A-1)-
(A-8), the dlspersxon determinant becomes the same as that given by Jones
for the plane two-layered problem. As would be expected, the waves degen-
erate into two Rayleigh surface waves, one in each medium, and a possible
Stoneley wave at the interface. » _

For wavelengths of intermediate size it is difficult to extract much
information about the character of the possible wave propagation solutions

except by considering specific numerical examples. This is done in the

following section where the results of the numerical example are also used

to check the accuracy of the shell theory given in Ref. 1.

-13-
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. ml. COMPUTATIONS

In order to investigate the character of the wave propagation Jolutions
governed by Egs. (A-1)-(A-8) numerical analysis was tmplnioll. A program
for the IBM 7094 computer wae developed at the Asrcapace Corpsration for
determining phase velocitiss (and from them, frequenciss) satiefying Eq. (16).

. To facilitate the use of the prasent solution for assessing the range of validity
of approximate sheil theories, displacement and stress distributions through
the cylinder thickness are calculated as well,

For a given numerical problem valid computer results are obtained oaly
for a limited range of wavelengths. The largest number available for routine
calculation fe 10” ~ exp (88), while for large wave numbers the I's {modified
Beseel functions of the first kind) are of the order of exp [ (RH)}a/})]. Here
H= hl + hz is the total wall thickness of the cylinder. Thus, for valid com-
puter resultc, kH cannot be much largar than 88(H/a). 5 the example to be
considered here a/H ie 30 so that XM < 3 gives a fair ectimate «f the range
amenable to computations based on Eq. (16), For larger values of kH the

. wavelength is short compared to the radius of the cylinder, the asymptotic
expressions ¢’ Eq. (19) are appropriate, and satisfactory numerical resulte
are obtained using a cotnputer program based on the plane medium equations
of Ref. 21,

Properties of the cylinder chosen for detailed numerical study are given
in Table I. Thiv example was used to check the validity of the approximate
ghell theory of Ref. 1 where dispersion curves were compared for low
frequencies and large wavelengths, Additional diepersion curves are presented
here for the first nine modes of axially symmetric wave propagation, Dis-
tributions of displacements and stresses through the thickness of the cylinder
are also presented, and for the (iret four modes these are comparsd with the

distributions predirted by the approximate shell theory, 1




Table I. Numerical Praogerties of the Cylinder Studied

Bronarsias hoter Laves Innar Laver ’
6 2 6 2 !
Material Constants E, = 4,00 X 10"1b/in. E, = 30.0 X 10" Ib/in. i :
Vl x 1/4 Vz =1/3

oy = {2000 ) tbsact/int 5, < (L) oevac?iin !
Geometrical Farameters

q =30 1}:0.3 = 0.7 (Hzh +h)) |

A, DISPERSION CURVES

Dispersion curves for the cylinder of Table 1 sppear in Figs, 1 and 2, In
both graphs, the abscissa is nondimensionsl wave numbcr A=z=kH. In Fig, | the
ordinate is nondimensional phacte velocity s = clp = u/kB md in Fig. 2 it is
nondimensional frequency Q = ul-l/p‘. The reference velocity p = (8, + pz)ll. O
' The approach of the phase velocity to various limiting valuas may be ]

examined in Fig. 1. For instance, foir voery long waves, the phase velocity cf
the first mode approxirnates that of ""bar' waves. Also, for very short waves
the phase velacity of the first mode approaches the Rayleigh wavs speed of the
slower mediumn. For tane second and higher modes the phase velocity becomes
very large as the wave number is made smaller. Therefore, the long wave-
lenygth behavior of thesa modes is batter examined in the frequency wave number
plot of Fig. 2.

In Fig. 2 it is observed that curves for all the modes axcapt the first have i
a finite frequency intercept for xero wave number, Theze frequencies and tha
chauracter of the motinn for aach of the modes are suminarizad in Tabie I1,
Other features of the curves pressnted in Fig. 2 include the relative minimum
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Table 11, Character of the Infinite Wavelength Axially Symmetric

(' Vibratisns of the Two-Layered Cylinder of Table |
Mode Frec?ue ney Character of Motion
| 1] a vrara nadas. axial motion
2 C. 006 zerc nodes, radial motion, ''ring' vibration
3 5. 86 1 nede, axial motion, thickness shesar
4 5. 80 2 nodes, axial motion, thickness shear
5 7.07 | nods, radial motion, thickness etretch
6 10,2 3 nodes, axial motion, thickness shear
7 1.1 2 nodes, radial mction, thickness stretch
8 13,1 4 nodes, axial motion, thickness shear
9 15.9 5 nodes, axial motion, thickness shear

of mode 6 near A = 2.5 (this correaponde to zaro group velocity) and the close
approach of modes 7 and 6 near A = 3, 1. The inset of Fig. 2 shows this close
approach on a magnified scale.

(. B. DISPLACEMENTS

In Ref. 1 an approximate shell theury iz develop®d and parti-‘ly compared
with the present exact solutions. Figures 3 through 7 extend the con;pnrioon of
displacements over the entire range of interest. Due to the eigenvalue nature
of the problem considered the absolute magnitudes of the displacements are
undetermined since multiplication by a ~onstant {normalisation) iactor is
permissible. Therefore, our comparisons are of the shapes of the displace-
ment distributions, the magnitude haviny been adjusted to make the presen
sxact theory and the shell theory of Ref. | rg.ee at some convenient value of r.
Solution for both theories of a forced motion problem would permit comparisons
of magnitudes as well. However, examination of the shapes alone of the dis-
placement distributions is of interest since formulations of higher order shell
theories generalls postulate functional formas for the dependence of the dis-

placements on the thickness coordinate,

-19.
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For the present comparisons the axial displacements have been
normalized to maks axact theory and shali theory Mmm oqual to
one at the outer surface. This normalisation, of ouree, fixes m
raios betwasn the l‘lﬂm m-pncuntnu ol ‘ll. TwWo “Wﬂ'l - "Crf '
location in the shwll (except in the case of irfinite wavelength where axial
and radial motion are uncoupled). Tho radial displacements need nowhiere
be equal. Rathar than present them in such a form we have takea the liberty
of introducing a differemt normalization of the radial displacements. The
radial displacements from both theories are made squal to one at the outer
surface. Such a normalization is necessary for uncoupled radial motion,
and moreover it permits the use of a uniform scale for nearly all the radial
displacement plots. The information suppressed by this normalization
convention, that is, the ratio of tha maximum outer surface radial displace-
ment to maximum outer surface axial displacement, is presented in Tadble HI.

In Ref. | the first mode axial and radial displacements {as well as the
dispersion curves) were compared for a limited range of &4 <3.0. Figure )
extends this comparison up to & = 9.0. Since several curves for 0< 4 33,0
were presented in Ref, 1, the curves in Fig. 3 startat 4= 5.0. Further,
for A < 3,0, there is little variation of radial displacament through the
thickness, and the axial displacement differs little from the bi-linear dis-
tribution assumed in the shell theory. Sarting at & » 5, 0 the nomuniformity
of radial displacement bagins to become pronounced, and the axial displace-
ment becomes increasingly nonlinear,

Previous uuly-ul' 2 show that as ths wive number becomesz intreas-
ingly large the first mode decays from a flexural mods into 2 Rayleigh wave
io the slower medium. It is apparemt in the curves lor 4 = 9,0 that thie
transition is nearly complete: the motion is concestrated almost satirely in
the outer medium. One might expect certain of the displacoamert plots to
exhibit other surface or interface waves. Howsver, with the parameters wed
for these two media, calculations show thut Stoneiey waves do not exist st the
interface (Ref. 19, p. 113). Theory predicts that for sulficiently high wave
numbers & Rayleigh wave will form in the faster (inner) medium. Such a wave
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Table ill. Ratios of Outer Burfece Maximum Radial

Displacemment to Outer Surface Muwlintuss

Awinl I anlacosm st
o e T Ty T T T,

. - . me e
T (et My paly

EE et o 4

Mode Wave Numbar, & Exast Theory Beoll Thaory

s 1.089 1. 370

1 7 1.460 1.8%
9 1.630 1.739
0 [ ] » o

2 1 .0.277 -0.0165%
3 -2.621 -0.045
0 0 '

3 1 -0.102% -0, 0467
3 -0.0428 ~0. 0321
0 0 0

4 1 0.%22 0.0277
3 1.88% 0.0962
0 - -

s ‘ 'llu” .=
3 -21.5%0 -

ie nanifested in a more complicated way called "urmh.."zz and its coa-
sideration would require investigation of a larger range of A than has been
undertaken for the prosent work.

Figure 4 shows the seccad mode displacements for 4 =0, 1, and 3,
For & s 0, the motion is totally redial, and no plot of axial dteplucemants is
necessary. In contrast to the firet mode, the displacement curves dagenerate
from the shell theory quite rapidly with a phase reversal in tho radial displace-
ment airesdy apparent at 4 = 1,0, By A = 3,0 the nonlinearity of the curves ls
pronounced., They are totally ditferent {rom those of the shell theory. The




ok

e AL ITE 2R N

radial displacement curves for both A = 1.0 and 3,0 are evidencs that cen-
siderable thickness-stretch deformation is present.

Figures 5 and © show ins dispiacemenis i0s e i 5d and iviie Svees .
They are predominantly thickness-shear modes. At A = 0 the motion js purely
axial; therefors no radial displacement plots appear. In both figures, the
predictions from shell theory compare gquite well with the exact salution, at
least for the axial displacements. As in the second mode there is suificient
thickness-stretch motion present to cause the appearance of nodes in mot.d
the rudial displacement plots. Note in Fig. 5 that the radial dleplacements
for A = 3 are plotted to a different scale than the rest.

Figure 7 shows the displacements for the fifth mode, the first mode not
predicted by shell theory. At A = O the moiion is purely radial or thickness-
stretch. At least for small wave nuinber the shapes of the radial displacement
curves are such that a linear distribution might offer a good approximation.
Thus, & higher order shell theory admitting s linear distribution of radisl
displacements might give fair results for the loag wavelength gortim of the
fifth mode. Such a shell theory has been presented by Mirsky%® for s single-
layer cylindrical sholl. Resuming the examination of Figure 7 one sees thet
for finite wave numbers axial motion is present in a form that resembles
double -node thickness shear. However, the axial motiva shows little tﬁdmcy
toward linearity, indicating that (the same as in the lower modes) a shell theory
with linear axial displacement variation through the thickness will probably not
give a reasdnable approximation for larger wave numbere.

In summary the comparisons of the displacements {or the four lowest
modes shows that the socond mode yields the pourest compearicon hetween
exact and shell theory. Although this result is surprising, it could have been
anticipated since the second rnode dispersion curve deviates more from that
predicted by shell thaory for lower values of A than for the other modes. It
would appear that the incorporsation of thickness-stretch deformations is the
next essential step in improving the shell theory for high {requency, short
warelength use.
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C. STRESSES

Figures 8 through 11 describe the axial stress (r_ ) and the shear stross ‘
ge") dsteihutione. Ae with the disnlacements the absolute magnitude of the
stresses cannot be determined. The stresses from both the exact and shel)
theories were normaiized so thai ihe givaiest axial strsss 3t the onter adgee
or at the interface was set equal to either 21.0. This also fixes the magnitudes
of the shear stresses. :

Figures 8 and 9 show, respectively, the first mode axial and shear
strassen. It is seen in Fig. 8 that for & =3 there is good agreement with the
sheil theory, However, as A increasas the agreement detericrates. By &4 = 7
there is only fair agreament, and by A = 9 there is almost none, The latter
point is confirmed by the previous observation that by A = 9 there is a Rayleigh
wave formed in the outer medium. Figure 9 is probably of mors intereet since
an expected mode of failure of multilayored shells is in chear {ailure of the
bond., The shear strens distritution foilows roughly the same pattern as the
axial stresses, being close to the shell theory for & 5 § and being totally
different by A = 9,

Figure 10 shows the sscond mode stresses. As tnight be expected there
is not as good an agreement as with the first mcde, By A = 3,0 the shell theory .
stress Jdistributions are beginning to diverge sharply from the exact ones,

Figuisa 11 shows third mode streas distributions. There is good agree-
tnent with shell theory only for 4 s1,. By A = & there is considerable divergence
in the wtvesses, and by A = ) the sxact theory curves bear little resemblance
‘in shape tu those from the shell theory. The fourth mode curves, while not
prescnind, show a pattern similar to the third mode. It is worth noting that
althougb the stress comparison plots are usaful for illustrating qualitative
differonces between the theorics the quantitative interpretation can ba quite
sensit've to the particular normalization convention that is adopted.

In conclueion it is felt that if any shell theory is to be improved by the in-
trcduction of more dependent variables, thickness-stretch motion is essential.
Por atill higher modes to yield agresrnent it would be neceseary to add additional
sasar deformations corresponding to warping of initially plane cross sections.
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Fig. 11. Third Mode Stress Distributions

-32.




1V. CONCLUSIONS

The cbservations presented here on the dynamics of a two-laysred
cylinder are specifically pertinent to axially symmetric motions of s relatively
thin_w3llzd cylinder, The equations, howaver. are in no way restricted to
shell-like geometry. The observations are also pertinent to the shell theory
of Ref. 1 insofar as it is in agreement with the exact theory.

In many respects the resuits are similar to those for s homnogeneous
cylinder. In the lowest mode very long waves propagate with a finite phase
velocity. Infinite wavelength vibrations in the second mode occur with a
finite cutoff frequency corresaponding to extensional ring vibrations of the
cylinder. Cutoff frequencies for the higher modass correspond to simple
thickness-shear or thickness-stretch vibrations., For small enough wave-
lengths and/or for the higher modes a good description of the motion is obiained
using the simpler equations for the propagation of straight crested wavss in a
plare .edium of the same thicknecs.

However, unlike a homogeneous cylinder a two-layered cylinder does not
have equal surface wzve velocities at its inner and outer surfaces. When the
slower layer is much thinner this leads to a relative maximum at intermediate
wavelength of the first mode phase velocity vse wave number curve. For larger
wave numbers the phase velocitly is decreasing, and it thus approaches from
sbove the Rayleigh wave velocity of the slower medium. This character of the
phaase velocity dispersion relation is not matched even qualitatively by a Timo-
shenko-type shell theory. Presumably duplication of this behavior would require
a higher order shell theory accoammodating cross section distortions such that
initially plane cross sections of either layer no longer remain plane in the
deformed shell.

Some further conclusions pertinent to the development of higher order
shell theories are in order, The displacement and stress distributions presented




here reinforce the conclusion that good results ars cbtained by incorporating !
shear deiormaiion individualiy in caci laysi suih as wes Azzs iz Dt 2 ALl e :
it appears that if one desired to extend the range of applicability of the theory
of Ref. 1 by adding more dependent variables the next logical step would be

incorporation of thickness-stretch deformation individually in each layer.
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APPENDIX

FYDRRAMONS FOR AOMTNNARY CONINTIONS

Equations resulting from the satisfaction of {res surface uw
boundary conditions, Eqe. 15, appeur in this Appendix; they are:

A\F), +8,Q,, +CR,, +D,8§,, =0 (A-1)
AT, -BU,,+C\V, -D W, =0 (A-2)
A Pyo* B1#1 Qg + CyiRyg # DyiySpg = AgupPaq ¢ BauaQyg * CarzR2o

+ Dona820 A-3)

A Tio - BiiUyo* €11 Vig - Dy W0 = AgkpT20 - BataV20
+Cr Voo - D %20
(A-4)

Alcll‘kclt) - qull(l&cln) + clalll&‘l') - lellltbln) i
= A, 1, 0050) - ByeoK, kea) ¢ C,8,1,&8,2) - D, 5,K, &é,a) Ny |

(A-5)

Alghe,a) + B Koeja) ¢ cla{'lomla) + nls}xom‘.)
2 A 1k ea) ¢ BKokepe) ¢ czogxoaaza) + Dz‘%‘o“"z‘) (A-6)

AuPoa t BQ,, ¢ Cr,, ¢ nzsu =0 (A-7)

.A.‘-




ATy " BaUpp 1 CpVap < B Wpo = @ iA-8)

whore the lengthier combinations of Bessel funetions kave bren sdbreviated

tesasdine o the {allamming

l‘hl‘a) )
)

P, - (1+ 6?)100;.‘;) . zaf

K)ea)
Taa

2 2
Q, = (1 + 8 )K°&4‘5)+ 2

2- l(k&.)
Ry =28 o‘“"--tn—

2 1“‘

Tu = 24 1 &lil)
Uy

vy " o (1+ a})xlow‘.)

= Zcil( 1 ktia)

W, =8 (1 + ef)x‘o;aig) J

where i takes on values ) and 2. The subscript j takes on valuse 1. 0, and 2,
which corresponde to 1aultiplying the a..guments by 1 ¢+ "l' 1, and 1 - \2.
respectively; o.g..

2 ll(k‘il‘" + kl"

P, * 1+ af)lolu.‘.u ) -2 B otec.

Hewe ), = blll) and \z = Onz/a).
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are treated as traction-frse.

each layer.
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The linear theory of elasticity is used to investigats axially eymmetric wave
propagation in an infinitely long two-layered cylinder.
taken to be homogensous and isotropic.
interface, while the inner and outer boundarise of the composite cylinder
The dispersion determinant relating phase
velocity and wave numbear for a harmonic train of waves satisfyivg these
boundary conditions is presented. The character of the disperesion equation
i. investigated analytically and numerically.
distributions are also presented for the numerical example.
are made with an approximats solution of the same problem obtained by
means of a thin shall theory incorporating thickness -shear deformation of

Each material is
A parfect bond is assumed at the

Stress and displacement
Cormparisons

L i —p s o) [ R







